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Abstract 

 
Background:  
Information on life expectancy change is of great concern for policy makers, as evidenced by 
the discussions of the so-called “harvesting” issue, i.e. the question how large a loss per death 
corresponds to the mortality results of time series studies. 
Methods: 
Whereas most epidemiological studies of air pollution mortality have been formulated in 
terms of mortality risk, this paper shows that a formulation in terms of life expectancy change 
is mathematically equivalent but offers several advantages: it automatically takes into account 
the constraint that everybody dies exactly once, regardless of pollution; it provides a unified 
framework for time series, intervention studies and cohort studies; and in time series and in 
intervention studies it yields the life expectancy change directly as a time integral of the 
observed mortality rate.  
Results:  
Results are presented for life expectancy change in time series studies. Determination of the 
corresponding total number of attributable deaths (as opposed to the number of observed 
deaths) is shown to be problematic. The time variation of the mortality after a change in 
exposure is shown to depend on the processes by which the body can repair air pollution 
damage, in particular on their time constants. Hypothetical results are presented for repair 
models that are plausible in view of the available intervention studies of air pollution and of 
smoking cessation. If these repair models can also be assumed for acute effects, the results of 
cohort studies are compatible with those of time series.  
Conclusions: 
The proposed life expectancy framework provides information on the life expectancy change 
in time series studies, and it clarifies the relation between the results of time series, 
intervention and cohort studies.  
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1. Background 
 
There has been much debate about the significance of the mortality impacts (sometimes called 
“acute mortality”) observed in time series (TS) studies, an issue often referred to as harvesting 
or mortality displacement [see e. g. references 1, 2]. The key question is whether the observed 
deaths have been advanced by only a few days or whether the loss of life expectancy (LE) is 
much larger. This issue is crucial for the monetary valuation and for policy implications [3, 
4]. 
 
For a new perspective on this issue and on the relation between TS studies, intervention 
studies and cohort studies, the present paper formulates the analysis directly in terms of LE 
change, after showing that such a formulation is mathematically equivalent to the 
conventional formulation in terms of mortality risk. An LE formulation offers several 
advantages: it automatically accounts for the fact that everybody dies exactly once, regardless 
of pollution; it provides a unified framework for time series, intervention studies and cohort 
studies; and it yields directly a quantity of interest to policy makers.  
 
The constraint of fixed total probability of death can be appreciated by comparing an accident 
that instantly kills individuals in normal health (the LE loss ΔL is equal to the entire 
remaining LE) with a mortality risk that reduces LE by a short amount of time ΔL. The time 
dependence of the mortality rates is different. Whereas for an accident the mortality rate 
changes only at the moment of the accident, for the risk with the short ΔL the mortality rate 
increases initially but then decreases (relative to a reference population without the risk) 
during the ensuing period ΔL because of the individuals who would have died then but whose 
deaths were advanced. The delayed decrease can be called “compensating change”. Even 
though TS studies until now have not taken this constraint into account, it has not affected the 
results. For TS the compensating change becomes a more or less uniform background as a 
result of the fluctuations in concentration because there is a wide range of individual ΔL. In 
cohort studies the constraint is implicit in the study design, because they observe the net 
effect of chronic exposure. But the constraint is crucial for understanding the LE change in 
TS studies [see e.g. references 5, 6] and in intervention studies [7 - 10].  
 
A unified framework for TS and cohort studies has also been proposed recently by Burnett et 
al [11] who show that both types of study measure essentially the same risk function. 
However, these authors do not take into account the time variation of the risk function due to 
the compensating change, i.e. that the increased mortality due to a pollution peak now implies 
a decreased mortality at a later time.  
 
The present paper shows that the mortality fluctuations observed in TS studies are 
proportional to the instantaneous time derivative of the life expectancy. They are the result of 
exposures both in the recent and the distant past, but a strong correlation with the most recent 
exposure is observed since the fluctuations due to past exposures tend to average to zero. The 
acute LE loss due to a pollution peak can be calculated by integrating the mortality rate over 
the observation window of a TS study (typically 1 day) and results are presented for O3 and 
PM10 (including studies that have extended the observation window to 60 days). In 
intervention studies the (approximately) constant difference between exposures before and 
after the intervention makes it possible to determine the LE change by integrating the change 
of the mortality rate over time. Cohort studies [12 - 14] measure a long term relative risk from 
which one can calculate [15 - 18] the ultimate LE gain that can be achieved by a permanent 
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reduction of air pollution; it is equal to the LE change at the end of a sufficiently long 
intervention study. 
 
I also address the determination of deaths that can be attributed to air pollution. By contrast to 
the acute LE loss due to a pollution peak, the corresponding total number of deaths (in the 
sense of all deaths that are advanced by the peak) cannot be measured by epidemiology. The 
customary multiplication of mortality rate and relative risk increase of TS studies yields only 
a lower bound. This also prevents the determination of the LE loss per air pollution death.  
 
Unfortunately the available data are not sufficient to determine all quantities of interest, for 
example the relation between the results of TS, intervention and cohort studies, and the 
contribution of acute mortality to the total LE loss from chronic exposure. Since one needs 
models for the processes by which the body repairs air pollution damage, the remaining 
sections of the paper are somewhat speculative. Whereas the phenomenon of repair is well 
documented by studies of smoking cessation [19 – 21], less is known about repair of air 
pollution damage [for a review see 22]. In view of the available information it is plausible to 
assume that the LE change due to air pollution is proportional to the time integral of past 
concentrations weighted by exponential decay factors. Using model parameters suggested by 
the data, results are plotted for the evolution of mortality after an intervention. They indicate 
that the change in mortality rate is largest soon after the intervention. After a time long 
compared to the longest time constant of the repair processes the mortality rate returns to a 
level close to the one before the intervention (even though the LE gain is permanent), a 
consequence of the fact that everybody will die sooner or later. 
 
With these models the results of TS, intervention and cohort studies are remarkably 
compatible with each other. The contribution of acute mortality to the total LE loss of chronic 
exposure is equal to the relative risk increase times the time constant of the repair processes 
that are significant immediately after a pollution peak.  
 
2. Methods  
2.1. A Qualitative Model for Effects of Air Pollution 
 
Discussions of acute mortality impacts are often phrased in terms of a pool of individuals who 
are so frail that they succumb to a pollution peak. A large stationary population always 
contains many individuals who are so frail that an additional stress imposed by an air 
pollution peak can advance their death. For example, at any moment roughly 1% of a 
stationary population with life expectancy 75 yr are within the last nine months of their life 
and thus extremely frail. Illness can cause temporary episodes of frailty.  
 
But the fact that pollution-related deaths occur only in the frail pool does not mean that 
pollution has no effect on the rest of the population. Rather it contributes to reducing the 
reserve capacity of the body, as illustrated very schematically in Fig.1 without trying to give a 
precise definition of reserve capacity; it is inversely related to frailty (Fig.1 is inspired by a 
graph in chapter 4 of NRC [23]). A young healthy body has enough reserve capacity not to 
feel the relatively slight reduction due to acute or chronic pollution exposure. But the old or 
sick may be pushed below the threshold where death occurs. As individuals age they 
inevitably move into the pool of the frail. By diminishing the reserve capacity, pollution 
advances the passage into the frail pool and shortens life expectancy. On average the inflow 
to the frail pool equals the outflow. Time series studies measure the effect of pollution 
fluctuations on the outflow from this pool, as reflected in the number of deaths per day.  
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Fig.1. Schematic sketch of reserve capacity of the body as function of age, and effect of air pollution. 
There are natural fluctuations, e.g. due to illness, as suggested by the width of the lines. Air pollution 
lowers the curve. The effect of pollution on mortality (shown exaggerated for the sake of illustration) 
becomes observable in an epidemiological study only to the extent that there are individuals whose 

reserve capacity is so low that the extra stress pushes them below the threshold for survival. 

 
 
2.2. Change of Mortality After Change of Exposure 
 
Fig.2 shows a qualitative picture of the effect of a reduction of exposure on D, the number of 
deaths per day in a stationary population. In these graphs the lower dashed line represents the 
individuals whose deaths are postponed, the upper dashed line the postponed deaths when 
they do occur. The dashed lines are not observable. Only the net effect can be observed, 
shown by the heavy solid line, which is the sum of these dashed lines. The exposure reduction 
is temporary in parts a) and b), permanent in c). In part a) all individuals enjoy the same LE 
gain ΔL, so the upper dashed line is the mirror image of the lower one, but shifted by ΔL. In 
part b) there is a distribution of different LE gains; it broadens the upper dashed curve. After 
the initial drop the solid line moves above Dref; that is the compensating change mentioned in 
the Introduction. The onset of the compensating change gives a rough indication of ΔL.  
 
Part c) shows the effect of a permanent decrease of exposure (for simplicity for the case 
where all individuals enjoy the same LE gain ΔL). Now the postponed deaths reach a constant 
asymptotic level. The observable death rate drops at first, but then increases again, gradually 
reaching the original level even though the LE gain is permanent. That D must eventually 
return to the original level follows from the fact that in a stationary population the birth rate is 
constant and equal to D. Deaths have been postponed but not avoided. Eventually a new 
stationary state is reached, with a longer life expectancy and thus a larger population (for the 
same birth rate). The mortality rate is the ratio of D and population size; it decreases 
permanently whereas D returns to the original value.  
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Fig.2 Qualitative picture of the effect of a reduction of exposure on D, the number of deaths per day. 

Thick solid line = observable deaths, thin dashed line = deaths shifted by pollution. 
a) temporary reduction of exposure, all individuals have the same gain ΔL. 

 
 

 
b) temporary reduction of exposure, distribution of different individual gains. 

 
 

c) permanent reduction of exposure, all individuals have the same gain ΔL. 

 
 

 
2.3. Relation between Age-specific Mortality and Life Expectancy (LE) 
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To obtain quantitative results it is helpful to recall some well known elements of survival 
analysis. Let µ(x) be the age-specific mortality rate, defined such that someone who has 
reached age x has a probability µ(x) Δx of dying between x and x + Δx (usually one chooses 
Δx = 1 yr). The fraction of a birth cohort of initial age x0 that survives to age x is called 
survival function Sµ(x0, x). As shown in Appendix A, it is given by  
 
Sµ(x0,x) = exp[- 

! 

x
0

x

"  µ(x’) dx’]   , (1) 

 
and the remaining LE of a cohort of age x0 can be calculated as  
 
L(x0) =  

! 

x
0

"

#  Sµ(x0,x) dx   .  (2) 

 
If µ(x) is given, Sµ(x0,x) and L(x0) are thus uniquely determined. Vice versa, the function L(x) 
determines µ(x), as shown in Appendix A. Because of the one-to-one relation between µ(x) 
and life expectancy L(x), the mortality impact of air pollution can be analyzed in terms of a 
change in mortality rate or in terms of the corresponding LE change ΔL. Here and throughout 
the paper ΔL is the change per person, averaged over the population or population segment 
under consideration.  
 
2.4. Relation between LE Change and Mortality after Intervention  
 
Let us evaluate the change in mortality and LE as a function of time t after a permanent 
reduction of exposure at t = 0, the population having been stationary before the intervention. 
Here I look only at the entire population; more detailed equations for the effect on a cohort of 
a given age are derived in Appendix B. Consider a large stationary population of N 
individuals and the number of deaths per time, designated by D. It will be convenient to look 
at D because its change can be related directly to the postponement of the individual deaths. 
The population-averaged mortality rate µ, i.e. the average of µ(x) over the age distribution, is 
the ratio  
 
µ = D/N         . (3) 
 
Let µref be the mortality before, µ(t) the mortality after an intervention that reduces air 
pollution permanently by a constant amount. The relative risk is 
 
RR(t) = µ(t)/µref     (4) 
 
and it corresponds to an LE change  
 
ΔLt)  = L(t) – Lref    . (5) 
 
D and N are functions of the time t after the intervention. D and N before the intervention, 
designated by Dref and Nref, are independent of time because the population is stationary. Dref is 
equal to the birth rate. To find the evolution of D(t) and N(t) after the intervention and the 
relation between µ(t) and ΔL(t), let us begin by assuming a homogeneous population in the 
sense that all individuals experience the same LE gain ΔL(t). 
 



7 

It is helpful to consider small discrete time steps δt and to plot D as a sequence of boxes of 
width δt, the height representing the number of deaths during δt, see Fig.3. Before the 
intervention D = Dref = constant and the spacing of the boxes is uniform. After the 
intervention, the deaths occur later. The effect of this postponement of deaths on D can easily 
be understood by considering the shift of the boxes to the right, as shown in Fig.3 for t > 0. 
This results in an increase of the spacing between the boxes. D(t) is proportional to the 
density of the boxes.  
 
If the entire gain occurred instantaneously at t=0, all deaths would be postponed by the same 
amount; thus the spacing would again be dense and uniform after the first shift. In reality the 
gain ΔL(t) increases gradually with t, and the resulting spacing depends on its rate of change  
 
ΔL’(t) = dΔL(t)/dt . (6) 
 

Fig.3. Schematic sketch to illustrate the derivation of the evolution of the rate D of deaths per time 
after a step decrease of pollution. D is proportional to density of boxes (deaths per small time step δt). 

Dashed boxes show from where the boxes are shifted by the intervention. ΔL(t) = LE gain at time t 
after intervention.  

 
 
To find the density of boxes, note that between ti + ΔL(ti) and ti+1 + ΔL(ti+1) there is one box. 
For small δt this time interval is δt + ΔL’(ti) δt, and the density is 1 box/[δt + ΔL’(ti) δt]. At 
time t + ΔL(t) the ratio of the density of boxes after and before the intervention is therefore 
 

! 

density at t + "L(t)

density at t < 0
=

#t

#t+"L'(t)#t
=

1

1+"L'(t)
      (7) 

 
and since D is proportional to the density one obtains  
 
D(t+ΔL(t)) = Dref/(1 + ΔL’(t))     for t > 0 . (8) 
 
For a reduction of the exposure ΔL(t) increases with t, ΔL’(t) is positive and D is less than 
Dref. For later reference I note that Eq.8 also holds for the case where the exposure increases 
and ΔL’(t) is negative. When the asymptotic gain ΔL∞ has been reached, ΔL’(t) vanishes and 
D(t) is again equal to the initial value Dref because the birth rate has remained constant. But 
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the mortality rate µ has decreased permanently because the population size N has increased in 
proportion to the LE.  
 
So far I have assumed that all individuals have identical gains. In reality there is a distribution 
of different individual gains. Averaging the quantity 1 + ΔL’(t) over this distribution, the ratio 
Dref/D(t) is replaced by its average over the individual gains. For the small changes involved 
in air pollution studies the average of Dref/D(t) is very close to Dref divided by the average 
D(t).  
 
The LE gain ΔL(T) after a time T following the intervention can be obtained by integrating 
the measured data for Dref/D(t+ΔL(t)) of Eq.8 
 

ΔL(T) = 

! 

0

T

" ΔL’(t) dt = 

! 

Dref

D(t + "L(t))
#1

$ 

% 
& 

' 

( 
) dt

0

T

*        , 
(9) 

 
since ΔL(0) is of course zero. This is an integral equation because ΔL appears on both sides. 
However, in practice one can approximate the result by integrating in steps, obtaining the gain 
at tk+1 from the one at tk 
 

ΔL(tk+1) = ΔL(tk) +

! 

Dref

D(t + "L(tk ))
#1

$ 

% 
& 

' 

( 
) dt

tk

tk+1*   . 
(10) 

 
The ultimate gain ΔL∞ is the limit reached when T → ∞; in practice the finite observation 
period yields of course only a lower bound (note that the integrand is positive-definite for a 
permanent pollution decrease), but a leveling off of the integrand would indicate that one is 
getting close to the ultimate gain. The units of ΔL(T) are the same as the ones chosen for t 
since the integrand is dimensionless. The result is the gain per person, averaged over the study 
population.  
 
The mortality µ(t), and hence the relative risk, can be obtained by dividing D(t) by the size of 
the respective populations according to Eq.3. Since the birthrate is constant, the population 
size N(t) increases with LE, ultimately reaching  
 
N∞ = Nref (Lref + ΔL∞)/Lref      (11) 
 
when new stationary conditions are established, Lref being the LE before the intervention. 
Whereas D returns asymptotically to the initial value, the mortality rate µ is lower because 
people live longer and the population size has increased.  
 
The exact time dependence of N(t) and µ(t) would require a more detailed calculation because 
during the transition to the new stationary state different age groups increase differently; but 
in any case N(t) is bounded by Nref and N∞. Since the population-average LE gain is short 
compared to Lref (at most a few months compared to about 75 years, see Eq.17 below), the 
change of the population size is entirely negligible in practice considering the uncertainties of 
the data, and one can use the approximation 
 
RR(t) = µ(t)/µref ≈ D(t)/Dref  . (12) 
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Since the change in relative risk ΔRR(t) due to typical exposures is small compared to unity, 
one can further approximate Eq.9, with negligible error, by  
 
ΔL(T) ≈ -

! 

0

T

" ΔRR(t+ ΔL(t)) dt         . (13) 

 
Stepwise integration as in Eq.10 can be used, although the ΔL(t) on the right hand side can be 
neglected if T is relatively short as shown by the example in Section 3.1.  
 
To conclude this section I emphasize that the key result is Eq.9 (or 13) which yields the LE 
change after an intervention as time integral of the observed death rate (or change of relative 
risk). As written, it is appropriate for the entire population, but with the obvious addition of a 
label x for age it also holds for a constant age segment or for a birth cohort of age x, as shown 
in Appendix B.  
 
3. Results  
3.1. LE Change for Time Series 
 
In the LE framework the mortality measured by typical TS studies corresponds to an 
intervention study that lasts only one day. Thus the LE change is given by Eq.13 with T = 1 
day. It represents the acute loss of life immediately after a pollution peak. Let us insert into 
Eq.13 the relative risk for 10 µg/m3 of PM10 found in the analysis of the NMMAPS data for 
90 cities in the USA, as recently revised to correct for the GAM problem [24]; it is ΔRR(0) =  
0.0021 for the GLM version of the analysis (the t = 0 indicates that this is for the first day). 
The result is  
 
- ΔL(1 day) = ΔRR(0) * 1 day  
  = 0.0021 days for acute mortality from 1 day at 10 µg/m3 PM10. 

(14) 

 
It would be almost twice as high for the original GAM estimate of ΔRR(0) =  0.0041. The 
minus sign indicates a loss for a risk increase. 
 
Recently Schwartz [2] and Zeger et al [1] have succeeded in extending the exposure duration 
up to T = 60 days, measuring in effect the average relative risk ΔRRav corresponding to the 
average concentration Δcav of PM10 during the period T. They find that ΔRRav/Δcav increases 
with T at least up to 60 days, the longest for which their method could be used. For all-cause 
mortality Schwartz found that ΔRRav/Δcav increased linearly with T and at 60 days was about 
twice that for one day. Fairly similar results have been found in other studies that have 
extended the observation window [10]. Since ΔRRav is the average from t = 0 to T of the 
relative risk ΔRR(t) at time t, the result of Schwartz implies that 
 
ΔRR(t) = ΔRR(0) (1 + 2 t/60 days)  . (15) 
 
Inserting this into Eq.13 yields  
 
- ΔL(T) = ΔRR(0) T (1 + T/60 days)       up to 60 days; (16) 
 
it increases in linear plus quadratic fashion, reaching 0.0021 * 60 days * 2 = 0.25 days after 2 
months. This is the population average LE loss per person. For sensitive subgroups the loss is 
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of course much higher, but at the present time not enough is known about individual 
sensitivities. 
 
It is interesting to compare these numbers with the ultimate LE gain ΔL∞ achievable by a 
permanent reduction of PM10. That can be calculated on the basis of the cohort studies such as 
the one Pope et al [14] which are essentially steady state comparisons of the effects of 
different exposures. Several authors have published such calculations [4, 15 - 18], based on 
the cohort study of Pope et al [14], with essentially the same result for the same long term 
relative risk. For example, Rabl [4] found  
 
- ΔL∞ = 92 days  for lifetime exposure at 10 µg/m3 of PM10. (17) 
 
This is very much larger than ΔL(1 day) = - 0.0021 days of Eq.14, for two reasons: the latter 
is for a single day of exposure, and it includes only acute effects. The contribution of acute 
mortality to the LE loss from chronic exposure will be addressed in Section 4.2.  
 
For O3 only acute mortality has been measured until now. The meta-analysis by the World 
Heath Organization [25] provides a ΔRR for all-cause mortality of 0.003 per 10 µg/m3 
increase in the daily maximum 8-hour mean O3. Analogous to Eq.14 the corresponding LE 
loss is ΔL(1 day)acute = - 0.003 days.  
 
3.2. LE loss per death 
 
For acute mortality the LE loss per air pollution death can be obtained by dividing the LE loss 
of Eq.14 by ΔNdeaths, the number of acute deaths that are attributable to a pollution peak. If one 
calculates the latter by multiplying the daily mortality by the relative risk, one finds for a peak 
of one day 
 
ΔNdeaths- = (0.01/365) * 0.0021 = 5.8E-8  for 10 µg/m3 PM10, (18) 
 
taking a typical mortality for Europe and North America of µ = 0.01 per yr per person 
together with ΔRR(0) =  0.0021 (note that ΔNdeaths-, like ΔL, is normalized per person). I have 
added the subscript – to indicate that this is a lower bound because it corresponds to the 
observed deaths, i.e. the solid black line in Fig.1. The corresponding upper bound for the loss 
per death is   
 
ΔL(1 day)/death < 100 yr/death   independent of exposure  (19) 
 
because both numerator and denominator are proportional to exposure. This is clearly an 
upper limit as indicated by the subscript +. Since the real loss per death is certainly much 
smaller, the number of attributable deaths must be much larger than what is observable.   
 
The attributable deaths are all the deaths that have been advanced by pollution, i.e. the thin 
dashed line in Fig.1. Unfortunately that is not known. If everybody’s death is advanced 
somewhat, even if only by an undetectably small amount, ΔNdeaths would be equal to 
(0.01/365). If only a fraction fsens of sensitive individuals is thus affected,  
 
ΔNdeaths+ = (0.01/365) * fsens  independent of exposure, (20) 
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and hence the lower bound is  
 
ΔL(1 day)/death > 0.21 yr/fsens for 10 µg/m3 PM10, proportional to exposure.  (21) 
 
3.3. Models for the Repair Processes  
 
Whereas all the results up to this point follow from the data, the rest of the paper invokes 
models of the action of pollution damage and is thus more speculative. A model is necessary 
to estimate how the mortality rate will change during an intervention study, beyond the period 
for which data are available (60 days for PM10, at most a few days for O3 and SO2).  
 
Let us assume that LE loss is proportional to the concentration c of the pollutant. 
Furthermore, past concentrations have less impact now because the body is able to repair 
some of the damage, an ability well documented in the case of ex-smokers [19 - 21]. To 
account for repair, it seems plausible to assume exponential decay for the effect of past 
exposures. If there is only a single time constant τ one obtains the following model for the LE 
loss at time t due to a sequence of concentrations {c(t’)} between t0 and t  
 
ΔL(t) = - k

! 

t
0

t

" c(t’) exp[-(t-t’)/τ] dt’       , (22) 

 
where c(t’) is the concentration at time t’ and k is a proportionality constant. The minus sign 
is introduced because concentrations are positive and ΔL is a loss. A more realistic model 
contains several terms with different time constants, as described in Appendix C. If the body 
could not recover, the time constant(s) would be infinite and the LE loss would depend only 
on the cumulative exposure, not on its distribution over time 
 
Leksell & Rabl [15] reviewed the studies of ex-smokers, especially the one by Doll et al [20], 
one of the most comprehensive long term studies of smokers and ex-smokers. They found that 
the recovery can be approximated quite well by an exponential decay model with two time 
constants: a time constant of 1.5 years with weight 0.3 and one of 13 years with weight 0.7. 
Similar conclusions can be drawn from the data in USDHHS [19]. 
 
Applying time constants from smoking studies to air pollution entails of course uncertainties. 
For PM the similarities in pollutant composition and in the nature of the health end points 
may be close enough for this purpose. Röösli et al [22] have analyzed the two available 
intervention studies that involve PM10 and found a time constant of 1.1 yr for the Utah steel  
mill intervention [7] and 9 yr for the intervention in Dublin county [9]; these values are 
consistent with those from smoking if one notes that the duration of the Utah intervention was 
only about one year, to short to allow the determination of longer time constants, whereas the 
change in Dublin was permanent but the study period of Clancy et al covered only six years. 
For other pollutants such as O3 and SO2 the estimation of time constants is more problematic.  
 
At this point I use a model with a single time constant, for the purpose of illustration. For a 
permanent step decrease Δc of the concentration the LE gain is  
 
ΔL(t) = - k Δc τ [1 - exp(-t/τ)]     with t = time after decrease . (23) 
 
The ultimate gain, for t →∞, is 
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ΔL∞ = - k Δc τ       . (24) 
 
One could include an age dependence in ΔL(t) and k, although the available data do not show 
any significant variation with age [26].  
 
Since some of the repair probably does not begin immediately, some of the LE gain is delayed 
relative to the model of Eq.23. A more realistic model would include a distribution p(λ) of 
different lags λ between exposure and LE change, replacing Eq.23 by  
 
ΔL(t) = - k Δc τ 

! 

0

t

"  dλ p(λ) [1 - exp(-(t-λ)/τ)]       . (25) 

 
3.4. Possible Outcomes 
 
Results are plotted in Fig.4, for three models. For all of them D(t) drops to a minimum soon 
after the intervention, but then increases again, becoming almost indistinguishable from the 
old values after several time constants. Without lag the initial drop is abrupt and has 
magnitude  
 
D(0)/Dref(0) = 1/(1 + ΔL’(0)) = 1/(1 - k Δc)    if no lag,  (26) 
 
regardless of the number of time constants in the model. With a distribution of lags the drop is 
gradual, as shown by the thick gray line in Fig.4 for which a uniform distribution of lags from 
0 to 0.5 yr has been assumed arbitrarily. The area between the curve and the line D(t)/Dref = 1 
is equal to ΔL∞.  
 
Fig.4. Plot of deaths per time D(t), before and after intervention, for a stationary population. Results 

are shown for model with one time constant τ and ΔL∞ = 0.5 yr. 

 
 
4. Discussion  
4.1. Relation between Time Series and Cohort Studies  
 
Even though the designs of cohort and time series studies are very different, in particular with 
regard to the accounting for characteristics of individuals, the results should be consistent to 
the extent that the end point is comparable. That time series and cohort studies have a 
common ground has also been shown by Burnett et al [11], formulated in terms of relative 
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risk (hazard function). Since the models of Sections 3.3 and 3.4 yield the entire time 
dependence of the mortality after a change in exposure, they imply a relation between the 
results of TS and cohort studies.  
 
In these models the frail pool is implicit: it consists of the individuals who are going to die in 
the near future and whose deaths would be advanced by a pollution peak to the days 
following the peak. The LE change in these equations expresses the total effect of pollution 
on a stationary population, without distinguishing between acute effects from recent exposure 
and chronic effects from past exposure.  
 
If the models are also valid for acute effects, they can be applied to a TS of fluctuations 
because it does not matter whether concentrations increase or decrease: the models are linear 
and the exposure for each new day is added to the previous exposures. The concentrations are 
always positive, whether increasing or decreasing. The effects are symmetric between 
increases and decreases. A single peak of duration t is equivalent to the superposition of a 
permanent increase and a permanent decrease of equal magnitude t later. The change in 
mortality that would be found in a time series during the first day (or days) after a pollution 
peak is the change during the first day (or days, up to t) in Fig.4. 
 
As an example consider the model of Eq.25 with one time constant τ and a distribution p(λ) 
of lags, applied to the entire population. With the approximations already made in Section 3.1 
for the relation between ΔRR(t) and ΔL’(t) for short times t one obtains  
 
ΔRR(t)/Δc = k P(t)      (27) 
 
with 
 
P(t) =

! 

0

t

"  dλ p(λ) exp(-(t-λ)/τ)    . (28) 

 
With the TS result of ΔRR(0)/Δc = 2.1E-03 per 10 µg/m3 PM10, Eq.14, this fixes the relation 
between k and P(t) at t = 1 day  
 
k = 2.1E-03/P(1day) per 10 µg/m3 PM10     . (29) 
 
On the other hand, combining Eqs.17 and 24 for the LE loss ΔL∞, one obtains 
 
k τ = 0.23 yr per 10 µg/m3 of PM10. (30) 
 
Assuming τ around 10 yr one finds k=0.023 per 10 µg/m3. Thus the two estimates of k agree 
if P(1day) = 0.0021/0.023 = 0.09, i.e. if only 9% of the repair begins during the first day. Of 
course, the epidemiological estimates are quite uncertain, and the model for repair is 
speculative and crude, especially if it contains only one time constant. Nonetheless it is 
encouraging that the two estimates of k are compatible.  
 
4.2. Contribution of Acute Mortality to LE Loss from Chronic Exposure 
 
The LE loss of Eq.14 is the acute mortality, i.e. the mortality during the first day of a one-day 
of exposure. For health impact assessments of pollutants for which only TS results are 
available, one needs to evaluate the acute impacts of successive one-day exposures. That is 



14 

not simply the product of the one-day impact times the exposure duration because past 
exposures are reduced by the repair capacity of the body. The LE loss of Eq.14 cannot be 
used directly because it is for a single peak. 
 
Let us split the LE change of Eq.25 into an acute contribution ΔLac plus the rest, the acute 
term being the effect of each day’s exposure during that same day. Assuming a one-time 
constant model for the acute term one finds, analogous to the derivation of Eq.24, that the 
cumulative change resulting from an infinite series of one day exposures to Δc is  
 
ΔLac(∞) = - kac Δc τac     . (31) 
 
Since the change ΔL(1 day)= ΔRR(0) * 1 day (see Eq.14) from a single day is entirely due to 
acute effects, we can set kac equal to k P(t) of Eq.27 and obtain   
 
ΔLac(∞) = ΔL(1 day) * τac/1 day  . (32) 
 
For acute effects a time constant around 1.5 year is plausible because it corresponds to time 
constants for short term cardiovascular benefits found in smoking cessation studies [21]. That 
implies - ΔLac(∞) = 0.0021 days * 365 * 1.5 = 1.2 days, a little more than 1% of the total 
acute + long term - ΔL∞ = 92 days of Eq.17.  
 
In previous publications a different approach to estimate the LE loss due to acute mortality 
has been used by the ExternE project series [3], namely calculating a number of deaths as 
product of baseline mortality rate and ΔRR and multiplying it by assuming 6 months as LE 
loss per death. Whereas the resulting ratio of acute over total LE loss for PM10 was also about 
1%, the method is not correct for several reasons:  

• the total number of attributable deaths is not known as explained in Section 3.2; 
• the LE loss per death is not known; 
• the calculation does not take into account the effect of repair because it simply 

multiplies one-day impact by exposure duration.  
Thus number of air pollution deaths, which was shown [4] to be meaningless for cohort 
studies (total air pollution mortality) is meaningless even for acute mortality. The approach of 
Eq.32 has the advantage of starting from a solid basis, namely the LE loss due to a single 
pollution peak; of course, it is also problematic because it needs to invoke a repair model.  
 
There are question marks about the models that I have assumed, quite apart from the number 
of time constants and the parameter values. In particular, the triggering of deaths among frail 
individuals during a pollution peak (via heart attacks that can shorten the life of a few 
individuals by a large amount) is different from the accumulation of damage among the 
general population (small incremental LE loss for many individuals). So the repair model may 
not be correct for all acute effects, and the symmetry between increases and decreases of 
exposure may be only approximate. In that case the model(s) for LE change as function of 
exposure would have to be modified by an explicit model for the frail pool.  
 
5. Conclusions 
 
By formulating the analysis of air pollution mortality in terms of LE (life expectancy) rather 
than mortality risk, one obtains a unified framework for time series studies, intervention 
studies and cohort studies. TS studies measure the instantaneous time derivative of LE 
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changes due to pollution. One of the advantages of this approach is that it yields as rigorous 
model-independent result the LE change after a pollution peak or after an intervention as an 
integral of the observed mortality rates. However, the estimation of the number of deaths 
attributable to air pollution is problematic and so is the LE loss per air pollution death.  
 
The relation between the results of the different study types depends on the processes by 
which the body repairs air pollution damage. Using plausible models for the repair processes, 
one finds that the mortality rates change most strongly in the initial period after the 
intervention, thereafter returning to a level close to the original, even though the population 
has obtained a permanent LE gain. The time scale depends on the time constant(s) of the 
repair processes. Unfortunately not enough is known about repair processes at the present 
time to allow more specific conclusions.  
 
With the assumed repair models one finds that the results of TS studies are consistent with the 
ultimate LE change due to a permanent exposure change, as determined by cohort studies. 
This raises the interesting possibility of using repair models to estimate the LE gain 
achievable by a permanent reduction in O3 exposure, a pollutant for which a significant effect 
has been identified so far only by TS and not by cohort studies.  
 
Abbreviations and symbols 
 
c = concentration of pollutant; 
Δc = concentration change; 
D = death rate of population or population segment, absolute number [deaths/time]; 
k = proportionality constant for relation between Δc and ΔL; 
LE = life expectancy; 
L(x0) = remaining life expectancy (survival time); 
ΔL = change in life expectancy [yr/person], positive for a gain; 
N = population size; 
RR = relative risk; 
S(x0,x) = survival function = fraction of birth cohort of initial age x0 that survives to age x;  
t = time; 
TS = time series 
wi = weighting factors of different time constant in repair model; 
x = age; 
λ = lag time of repair model; 
µ = mortality rate = death rate/population size [deaths/time per person]; 
τ = time constant of repair model; 
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Appendix A. Relation between age-specific mortality and life expectancy 
 
The survival function Sµ(x0, x) is determined as the solution of the differential equation  
 
dSµ(x0,x) = - Sµ(x0,x) µ(x) dx  , (A.1) 
 
with the boundary condition Sµ(x0,x0) = 1. The solution is 
 
Sµ(x0,x) = exp[- 

! 

x
0

x

"  µ(x’) dx’]   . (A.2) 

 
Since the probability of a cohort member to survive to age x and die between x and x+Δx is 
Sµ(x0,x) µ(x) Δx, the remaining life expectancy L(x0), also known as expected survival time, 
of this cohort is obtained by integrating the age x times this probability over the entire cohort  
 
L(x0) =  

! 

x
0

"

# x  Sµ(x0,x) µ(x) dx   .  (A.3) 

 
Using Eq.A1 one sees that L(x0) is the area under the survival function, bounded by the x-axis 
and the y-axis at x=x0. Integrating by parts one obtains  
 
L(x0) =  

! 

x
0

"

#  Sµ(x0,x) dx   .  (A.4) 

 
If µ(x) is given, Sµ(x0,x) and L(x0) are uniquely determined. Vice versa, by the following steps 
one can show that L(x0) determines µ(x). The derivative of L(x0) is  
 

! 

dL(x
0
)

dx
0

="Sµ (x0,x0) +
#Sµ (x0,x)

dx
0

dx
x0

$

%  ,  
(A.5) 

 
and with Eq.A1 this becomes  
 

! 

dL(x
0
)

dx
0

="1 + µ(x
0
) Sµ (x0,x)dx

x0

#

$  = -1 + µ(x0) L(x0)      ,  (A.6) 

 
from which one obtains µ(x) as an explicit function of L(x).  
 

! 

µ(x
0
) = 1+

dL(x
0
)

dx
0

" 

# 
$ 

% 

& 
' /L(x0)     .  

(A.7) 

 
Appendix B. Change due to Intervention, by Age Group 
 
The arguments of Section 2.4 can also be used for a group of a specified initial age, either a 
birth cohort that has age x0 at the time of the intervention or a “constant age segment”, i.e. a 
population segment the age of which is held fixed. In the case of the birth cohort the death 
rate Dref(x0,t) in the absence of the intervention also changes with time, and one needs to 
consider the relation between D(x0,t) and Dref(x0,t). Generalizing Fig.3 to a situation where 
Dref(x0,t) varies with time, one readily finds  
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D(x0,t+ΔL(x0,t)) = Dref(x0,t)/(1 + ΔL’(x0,t))     for t > 0  (B.1) 
 
(now ΔL’(x0,t) designates the partial derivative of ΔL(x0,t) with respect to t). The size of a 
birth cohort is equal to the birth rate times the fraction Sµ(0,x,t) that survives to age x  
 
Sµ(0,x,t) = exp[-

! 

0

x

" µ(x’,t) dx’]     with x = x0 + t. (B.2) 

 
Therefore the age-specific mortality rate and the relative risk RR(x,t) are determined by  
 
RR(x,t) = µ(x,t)/µref(x,t) = [D(x,t)/Dref(x,t)]/[Sµ(0,x,t)/Sref(0,x,t)]   . (B.3) 
 
This is an integral equation since Sµ(0,x,t) involves an integral of µ(x,t). However, as first 
approximation one can set  
 
µ(x,t)/µref(x,t) ≈ D(x,t)/Dref(x,t)   (B.4) 
 
for the small changes encountered in practice. Then one could improve the approximation by 
iterations, if desired. Thus the second approximation involves inserting µ(x,t) = µref(x,t) 
D(x,t)/Dref(x,t) into Eq.B.3 and using it to calculate an improved estimate of Sµ(0,x,t). That the 
corrections are very small can easily be verified by comparing Sref(0,x,t) with Sµ(0,x,t) in the 
limit of very large t when Sµ(0,x,t) approaches the steady state limit corresponding to the 
ultimate LE gain ΔL∞. As an example let us take a relative risk of 1.06 for a concentration 
change of 10 µg/m3 of PM2.5 [12, for the average concentration 1979-2000, in their Table 2]. 
It implies an ultimate LE gain of 0.4 yr for a permanent decrease of PM2.5 by 10 µg/m3. One 
finds that the corresponding difference between Sref(0,x,t) and Sµ(0,x,t) is at most a small 
fraction of a percent for ages below 50. Around 70 to 80 the relative difference becomes 
larger, up to a few percent, but even that implies only a small correction for the difference 
between µ(x,t)/µref(x,t) and D(x,t)/Dref(x,t), a correction that could be taken into account 
adequately by one iteration if necessary. 
 
Appendix C. Repair model with several time constants 
 
Processes with different time constants can be incorporated by making the replacement  
 
exp[-(t-t’)/τ)] → 

i

!  wi exp[-(t-t’)/τi)]   with  
i

!  wi = 1     . (C.1) 

 
in the equations of Sections 3 and 4. Leksell & Rabl [13] reviewed the studies of ex-smokers, 
especially the one by Doll et al [15], one of the most comprehensive long term study of 
smokers and ex-smokers. They found that the recovery can be approximated quite well by an 
exponential decay model with two time constants: a time constant of 1.5 years with weight 
0.3 and one of 13 years with weight 0.7. With this model the LE gain ΔL(t) after the cessation 
of smoking is  
 
ΔL(t) = - ΔL∞ {1 – [w1 τ1 exp(-t/τ1) + w2 τ2 exp(-t/τ2)]/(w1 τ1+ w2 τ2)}    (C.2) 
 
where w1 =0.7, τ1 = 13 yr, w2 = 0.3, τ2 = 1.5 yr, and ΔL∞ is the ultimate gain.  
 


